Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 549
Filter
1.
Cell Death Dis ; 15(5): 325, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724499

ABSTRACT

Cholesterol metabolism reprogramming is one of the significant characteristics of hepatocellular carcinoma (HCC). Cholesterol increases the risk of epithelial-mesenchymal transition (EMT) in cancer. Sterol O-acyltransferases 1 (SOAT1) maintains the cholesterol homeostasis. However, the exact mechanistic contribution of SOAT1 to EMT in HCC remains unclear. Here we demonstrated that SOAT1 positively related to poor prognosis of HCC, EMT markers and promoted cell migration and invasion in vitro, which was mediated by the increased cholesterol in plasmalemma and cholesterol esters accumulation. Furthermore, we reported that SOAT1 disrupted cholesterol metabolism homeostasis to accelerate tumorigenesis and development in HCC xenograft and NAFLD-HCC. Also, we detected that nootkatone, a sesquiterpene ketone, inhibited EMT by targeting SOAT1 in vitro and in vivo. Collectively, our finding indicated that SOAT1 promotes EMT and contributes to hepatocarcinogenesis by increasing cholesterol esterification, which is suppressed efficiently by nootkatone. This study demonstrated that SOAT1 is a potential biomarker and therapeutic target in NAFLD-HCC and SOAT1-targeting inhibitors are expected to be the potential new therapeutic treatment for HCC.


Subject(s)
Carcinoma, Hepatocellular , Cholesterol , Epithelial-Mesenchymal Transition , Liver Neoplasms , Sterol O-Acyltransferase , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Humans , Cholesterol/metabolism , Sterol O-Acyltransferase/metabolism , Sterol O-Acyltransferase/genetics , Animals , Mice , Male , Mice, Nude , Cell Line, Tumor , Cell Movement , Female , Mice, Inbred BALB C , Sesquiterpenes/pharmacology , Gene Expression Regulation, Neoplastic
2.
J Nanobiotechnology ; 22(1): 237, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735920

ABSTRACT

BACKGROUND: Myeloid-derived suppressor cells (MDSCs) promote tumor growth, metastasis, and lead to immunotherapy resistance. Studies revealed that miRNAs are also expressed in MDSCs and promote the immunosuppressive function of MDSCs. Currently, few studies have been reported on inducible cellular microvesicle delivery of nucleic acid drugs targeting miRNA in MDSCs for the treatment of malignant tumors. RESULTS AND CONCLUSION: In this study, we designed an artificial DNA named G-quadruplex-enhanced circular single-stranded DNA-9 (G4-CSSD9), that specifically adsorbs the miR-9 sequence. Its advanced DNA folding structure, rich in tandem repeat guanine (G-quadruplex), also provides good stability. Mesenchymal stem cells (MSCs) were prepared into nanostructured vesicles by membrane extrusion. The MSC microvesicles-encapsulated G4-CSSD9 (MVs@G4-CSSD9) was delivered into MDSCs, which affected the downstream transcription and translation process, and reduced the immunosuppressive function of MDSCs, so as to achieve the purpose of treating melanoma. In particular, it provides an idea for the malignant tumor treatment.


Subject(s)
DNA, Single-Stranded , G-Quadruplexes , Mesenchymal Stem Cells , MicroRNAs , Myeloid-Derived Suppressor Cells , Animals , Myeloid-Derived Suppressor Cells/metabolism , Mice , DNA, Single-Stranded/chemistry , Cell Line, Tumor , Mice, Inbred C57BL , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/metabolism , DNA, Circular/chemistry , Humans , Melanoma/drug therapy
3.
Comput Methods Programs Biomed ; 251: 108206, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38723435

ABSTRACT

BACKGROUND AND OBJECTIVE: Low-dose computed tomography (LDCT) scans significantly reduce radiation exposure, but introduce higher levels of noise and artifacts that compromise image quality and diagnostic accuracy. Supervised learning methods have proven effective in denoising LDCT images, but are hampered by the need for large, paired datasets, which pose significant challenges in data acquisition. This study aims to develop a robust unsupervised LDCT denoising method that overcomes the reliance on paired LDCT and normal-dose CT (NDCT) samples, paving the way for more accessible and practical denoising techniques. METHODS: We propose a novel unsupervised network model, Bidirectional Contrastive Unsupervised Denoising (BCUD), for LDCT denoising. This model innovatively combines a bidirectional network structure with contrastive learning theory to map the precise mutual correspondence between the noisy LDCT image domain and the clean NDCT image domain. Specifically, we employ dual encoders and discriminators for domain-specific data generation, and use unique projection heads for each domain to adaptively learn customized embedded representations. We then align corresponding features across domains within the learned embedding spaces to achieve effective noise reduction. This approach fundamentally improves the model's ability to match features in latent space, thereby improving noise reduction while preserving fine image detail. RESULTS: Through extensive experimental validation on the AAPM-Mayo public dataset and real-world clinical datasets, the proposed BCUD method demonstrated superior performance. It achieved a peak signal-to-noise ratio (PSNR) of 31.387 dB, a structural similarity index measure (SSIM) of 0.886, an information fidelity criterion (IFC) of 2.305, and a visual information fidelity (VIF) of 0.373. Notably, subjective evaluation by radiologists resulted in a mean score of 4.23, highlighting its advantages over existing methods in terms of clinical applicability. CONCLUSIONS: This paper presents an innovative unsupervised LDCT denoising method using a bidirectional contrastive network, which greatly improves clinical applicability by eliminating the need for perfectly matched image pairs. The method sets a new benchmark in unsupervised LDCT image denoising, excelling in noise reduction and preservation of fine structural details.

4.
J Ethnopharmacol ; : 118320, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740107

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Kelisha capsules (KLS) are often used to treat acute diarrhoea, bacillary dysentery, heat stroke, and other diseases. One of its components, Asarum, contains aristolochic acid I which is both nephrotoxic and carcinogenic. However, the aristolochic acid (AA) content in KLS and its toxicity remain unclear. AIM OF THE STUDY: The aims of this study were to quantitatively determine the contents of five aristolochic acid analogues (AAAs) in Asarum and KLS, and systematically evaluate the in vivo toxicity of KLS in rats. MATERIALS AND METHODS: Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the content of the five AAAs in Asarum and KLS. Sprague-Dawley rats were administered KLS at 0, 0.75, 1.5, and 3.0 g/kg respectively, and then sacrificed after 4 weeks of administration or after an additional 2 weeks of recovery. The endpoints assessed included body weight measurements, serum biochemistry and haematology indices, and clinical and histopathological observations. RESULTS: The AAAs content in Asarum sieboldii Miq. (HB-ESBJ) were much lower than those of the other Asarums. The contents of AA I, AA IVa, and aristolactam I in KLS were in the ranges of 0.03-0.06 µg/g, 1.89-2.16 µg/g, and 0.55-1.60 µg/g, respectively, whereas AA II and AA IIIa were not detected. None of the rats showed symptoms of toxic reactions and KLS was well tolerated throughout the study. Compared to the control group, the activated partial thromboplastin time values of rats in the 1.5 and 3.0 g/kg groups significantly reduced after administration (P < 0.05). In addition, the serum triglycerides of male rats in the 0.75 and 1.5 g/kg groups after administration, and the 0.75, 1.5, 3.0 g/kg groups after recovery were significantly decreased (P < 0.01 or P < 0.001). No significant drug-related toxicological changes were observed in other serum biochemical indices, haematology, or histopathology. CONCLUSIONS: The AA I content in KLS met the limit requirements (<0.001%) of the Chinese Pharmacopoeia. Therefore, it is safe to use KLS in the short-term. However, for safety considerations, attention should be paid to the effects of long-term KLS administration on coagulation function and triglyceride metabolism.

5.
J Biomed Opt ; 29(Suppl 1): S11530, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38632983

ABSTRACT

Significance: In the photoacoustic (PA) technique, the laser irradiation in the time domain (i.e., laser pulse duration) governs the characteristics of PA imaging-it plays a crucial role in the optical-acoustic interaction, the generation of PA signals, and the PA imaging performance. Aim: We aim to provide a comprehensive analysis of the impact of laser pulse duration on various aspects of PA imaging, encompassing the signal-to-noise ratio, the spatial resolution of PA imaging, the acoustic frequency spectrum of the acoustic wave, the initiation of specific physical phenomena, and the photothermal-PA (PT-PA) interaction/conversion. Approach: By surveying and reviewing the state-of-the-art investigations, we discuss the effects of laser pulse duration on the generation of PA signals in the context of biomedical PA imaging with respect to the aforementioned aspects. Results: First, we discuss the impact of laser pulse duration on the PA signal amplitude and its correlation with the lateral resolution of PA imaging. Subsequently, the relationship between the axial resolution of PA imaging and the laser pulse duration is analyzed with consideration of the acoustic frequency spectrum. Furthermore, we examine the manipulation of the pulse duration to trigger physical phenomena and its relevant applications. In addition, we elaborate on the tuning of the pulse duration to manipulate the conversion process and ratio from the PT to PA effect. Conclusions: We contribute to the understanding of the physical mechanisms governing pulse-width-dependent PA techniques. By gaining insight into the mechanism behind the influence of the laser pulse, we can trigger the pulse-with-dependent physical phenomena for specific PA applications, enhance PA imaging performance in biomedical imaging scenarios, and modulate PT-PA conversion by tuning the pulse duration precisely.


Subject(s)
Light , Photoacoustic Techniques , Spectrum Analysis , Signal-To-Noise Ratio , Acoustics , Lasers , Photoacoustic Techniques/methods
6.
Phys Med Biol ; 69(10)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38593821

ABSTRACT

Objective. The textures and detailed structures in computed tomography (CT) images are highly desirable for clinical diagnosis. This study aims to expand the current body of work on textures and details preserving convolutional neural networks for low-dose CT (LDCT) image denoising task.Approach. This study proposed a novel multi-scale feature aggregation and fusion network (MFAF-net) for LDCT image denoising. Specifically, we proposed a multi-scale residual feature aggregation module to characterize multi-scale structural information in CT images, which captures regional-specific inter-scale variations using learned weights. We further proposed a cross-level feature fusion module to integrate cross-level features, which adaptively weights the contributions of features from encoder to decoder by using a spatial pyramid attention mechanism. Moreover, we proposed a self-supervised multi-level perceptual loss module to generate multi-level auxiliary perceptual supervision for recovery of salient textures and structures of tissues and lesions in CT images, which takes advantage of abundant semantic information at various levels. We introduced parameters for the perceptual loss to adaptively weight the contributions of auxiliary features of different levels and we also introduced an automatic parameter tuning strategy for these parameters.Main results. Extensive experimental studies were performed to validate the effectiveness of the proposed method. Experimental results demonstrate that the proposed method can achieve better performance on both fine textures preservation and noise suppression for CT image denoising task compared with other competitive convolutional neural network (CNN) based methods.Significance. The proposed MFAF-net takes advantage of multi-scale receptive fields, cross-level features integration and self-supervised multi-level perceptual loss, enabling more effective recovering of fine textures and detailed structures of tissues and lesions in CT images.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Tomography, X-Ray Computed/methods , Image Processing, Computer-Assisted/methods , Humans , Neural Networks, Computer , Radiation Dosage , Signal-To-Noise Ratio
7.
J Agric Food Chem ; 72(15): 8823-8830, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38578074

ABSTRACT

Emetic Bacillus cereus (B. cereus), which can cause emetic food poisoning and in some cases even fulminant liver failure and death, has aroused widespread concern. Herein, a universal and naked-eye diagnostic platform for emetic B. cereus based on recombinase polymerase amplification (RPA)-assisted CRISPR/Cas12a was developed by targeting the cereulide synthetase biosynthetic gene (cesB). The diagnostic platform enabled one-pot detection by adding components at the bottom and cap of the tube separately. The visual limit of detection of RPA-CRISPR/Cas12a for gDNA and cells of emetic B. cereus was 10-2 ng µL-1 and 102 CFU mL-1, respectively. Meanwhile, it maintained the same sensitivity in the rice, milk, and cooked meat samples even if the gDNA was extracted by simple boiling. The whole detection process can be finished within 40 min, and the single cell of emetic B. cereus was able to be recognized through enrichment for 2-5 h. The good specificity, high sensitivity, rapidity, and simplicity of the RPA-assisted CRISPR/Cas12a diagnostic platform made it serve as a potential tool for the on-site detection of emetic B. cereus in food matrices. In addition, the RPA-assisted CRISPR/Cas12a assay is the first application in emetic B. cereus detection.


Subject(s)
Emetics , Food Microbiology , Recombinases/genetics , Bacillus cereus/genetics , CRISPR-Cas Systems , Sensitivity and Specificity , Nucleotidyltransferases/genetics
8.
Front Microbiol ; 15: 1372069, 2024.
Article in English | MEDLINE | ID: mdl-38577684

ABSTRACT

Introduction: Hepatitis E virus (HEV), with heightened virulence in immunocompromised individuals and pregnant women, is a pervasive threat in developing countries. A globaly available vaccine against HEV is currently lacking. Methods: We designed a multi-epitope vaccine based on protein ORF2 and ORF3 of HEV using immunoinformatics. Results: The vaccine comprised 23 nontoxic, nonallergenic, soluble peptides. The stability of the docked peptide vaccine-TLR3 complex was validated by molecular dynamic simulations. The induction of effective cellular and humoral immune responses by the multi-peptide vaccine was verified by simulated immunization. Discussion: These findings provide a foundation for future HEV vaccine studies.

9.
Microbiol Resour Announc ; : e0124123, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38682770

ABSTRACT

Bacillus cereus, a class of facultative aerobic gram-positive bacteria, is frequently isolated from soil, growing plants, and the intestinal tract of insects and mammals. Here, we report the complete genome sequence of B. cereus A01, whose total genome length is 6,097,808 bp, with a GC content of 34.92%.

10.
Transl Lung Cancer Res ; 13(3): 552-572, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38601452

ABSTRACT

Background: With its diverse genetic foundation and heterogeneous nature, non-small cell lung cancer (NSCLC) needs a better comprehension of prognostic evaluation and efficient treatment targeting. Methods: Bioinformatics analysis was performed of The Cancer Genome Atlas (TCGA)-NSCLC and GSE68571 dataset. Overlapping differentially expressed genes (DEGs) were used for functional enrichment analysis and constructing the protein-protein interaction (PPI) network. In addition, key prognostic genes were identified through prognostic risk models, and their expression levels were verified. The phenotypic effects of cell division cycle 25C (CDC25C) regulation on NSCLC cell lines were assessed by in vitro experiments using various techniques such as flow cytometry, Transwell, and colony formation. Protein levels related to autophagy and apoptosis were assessed, specifically examining the impact of autophagy inhibition [3-methyladenine (3-MA)] and the miR-142-3p/CDC25C axis on this regulatory system. Results: CDC25C was identified as a key prognostic marker in NSCLC, showing high expression in tumor samples. In vitro experiments showed that CDC25C knockdown markedly reduced the capacity of cells to proliferate, migrate, invade, trigger apoptosis, and initiate cell cycle arrest. CDC25C and miR-142-3p displayed a reciprocal regulatory relationship. CDC25C reversed the inhibitory impacts of miR-142-3p on NSCLC cell cycle proliferation and progression. The synergy of miR-142-3p inhibition, CDC25C silencing, and 3-MA treatment was shown to regulate NSCLC cell processes including proliferation, apoptosis, and autophagy. Conclusions: MiR-142-3p emerged as a key player in governing autophagy and apoptosis by directly targeting CDC25C expression. This emphasizes the pivotal role of the miR-142-3p/CDC25C axis as a critical regulatory pathway in NSCLC.

11.
Microbiol Spectr ; 12(5): e0405623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38563743

ABSTRACT

Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE: We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.


Subject(s)
Codonopsis , Klebsiella , Rhizosphere , Soil Microbiology , Klebsiella/genetics , Klebsiella/enzymology , Klebsiella/drug effects , Klebsiella/growth & development , Codonopsis/genetics , Codonopsis/growth & development , Codonopsis/microbiology , Plant Development , Rhizoctonia/growth & development , Rhizoctonia/genetics , Rhizoctonia/drug effects , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Plant Growth Regulators/metabolism , Plant Diseases/microbiology , Soil/chemistry
12.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443797

ABSTRACT

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Subject(s)
Panax notoginseng , Saponins , Triterpenes , Panax notoginseng/genetics , Metabolome , Gene Expression Profiling
13.
Int Heart J ; 65(2): 339-348, 2024.
Article in English | MEDLINE | ID: mdl-38556341

ABSTRACT

Myocarditis, a severe inflammatory disease, is becoming a worldwide public health concern. This study aims to elucidate the effect of Chemokine (C C motif) receptor-like 2 (CCRL2) in experimental autoimmune myocarditis (EAM) occurrence and its potential regulatory mechanisms.EAM was simulated in a mouse model injected with α-myosin-heavy chain. The changes on EAM were assessed through histological staining of heart tissues, including measuring cardiac troponin I (cTnI), proinflammatory cytokines, transferase-mediated dUTP nick end labeling (TUNEL) assay, and cardiac function. Then, the heart tissues from the EAM mouse model and control groups were analyzed through transcriptome sequencing to identify the differential expressed genes (DEGs) and hub genes related to pyroptosis. Downregulation of CCRL2 further verified the function of CCRL2 on EAM and p21-activated kinase 1/NOD-like receptor protein 3 (PAK/NLRP3) signaling pathways in vivo.The EAM model was constructed successfully, with the heart weight/body weight ratio, serum level of cTnI, and concentrations of proinflammatory cytokines elevation. Moreover, cell apoptosis was also significantly increased. Transcriptome sequencing revealed 696 and 120 upregulated and downregulated DEGs, respectively. After functional enrichment, CCRL2 was selected as a potential target. Then, we verified that CCRL2 knockdown improved cardiac function, alleviated EAM occurrence, and reduced PAK/NLRP3 protein expression.CCRL2 may act as a novel potential treatment target in EAM by regulating the PAK1/NLRP3 pathway.


Subject(s)
Autoimmune Diseases , Myocarditis , Animals , Mice , Autoimmune Diseases/pathology , Cytokines , Disease Models, Animal , Myocarditis/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins , p21-Activated Kinases/genetics
14.
Photoacoustics ; 37: 100600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38516294

ABSTRACT

The unique advantage of optical-resolution photoacoustic microscopy (OR-PAM) is its ability to achieve high-resolution microvascular imaging without exogenous agents. This ability has excellent potential in the study of tissue microcirculation. However, tracing and monitoring microvascular morphology and hemodynamics in tissues is challenging because the segmentation of microvascular in OR-PAM images is complex due to the high density, structure complexity, and low contrast of vascular structures. Various microvasculature extraction techniques have been developed over the years but have many limitations: they cannot consider both thick and thin blood vessel segmentation simultaneously, they cannot address incompleteness and discontinuity in microvasculature, there is a lack of open-access datasets for DL-based algorithms. We have developed a novel segmentation approach to extract vascularity in OR-PAM images using a deep learning network incorporating a weak signal attention mechanism and multi-scale perception (WSA-MP-Net) model. The proposed WSA network focuses on weak and tiny vessels, while the MP module extracts features from different vessel sizes. In addition, Hessian-matrix enhancement is incorporated into the pre-and post-processing of the input and output data of the network to enhance vessel continuity. We constructed normal vessel (NV-ORPAM, 660 data pairs) and tumor vessel (TV-ORPAM, 1168 data pairs) datasets to verify the performance of the proposed method. We developed a semi-automatic annotation algorithm to obtain the ground truth for our network optimization. We applied our optimized model successfully to monitor glioma angiogenesis in mouse brains, thus demonstrating the feasibility and excellent generalization ability of our model. Compared to previous works, our proposed WSA-MP-Net extracts a significant number of microvascular while maintaining vessel continuity and signal fidelity. In quantitative analysis, the indicator values of our method improved by about 1.3% to 25.9%. We believe our proposed approach provides a promising way to extract a complete and continuous microvascular network of OR-PAM and enables its use in many microvascular-related biological studies and medical diagnoses.

15.
Environ Int ; 185: 108549, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447453

ABSTRACT

Universal access to clean fuels in household use is one explicit indicator of sustainable development while currently still billions of people rely on solid fuels for daily cooking. Despite of the recognized clean transition trend in general, disparities in household energy mix in different activities (e.g. cooking and heating) and historical trends remain to be elucidated. In this study, we revealed the historical changing trend of the disparity in household cooking and heating activities and associated carbon emissions in rural China. The study found that the poor had higher total direct energy consumption but used less modern energy, especially in cooking activities, in which the poor consumed 60 % more energy than the rich. The disparity in modern household energy use decreased over time, but conversely the disparity in total residential energy consumption increased due to the different energy elasticities as income increases. Though per-capita household CO2 and Black Carbon (BC) emissions were decreasing under switching to modern energies, the disparity in household CO2 and BC deepened over time, and the low-income groups emitted âˆ¼ 10 kg CO2 more compared to the high-income population. Relying solely on spontaneous clean cooking transition had limited impacts in reducing disparities in household energy and carbon emissions, whereas improving access to modern energy had substantial potential to reduce energy consumption and carbon emissions and its disparity. Differentiated energy-related policies to promote high-efficiency modern heating energies affordable for the low-income population should be developed to reduce the disparity, and consequently benefit human health and climate change equally.


Subject(s)
Air Pollution, Indoor , Carbon , Humans , Carbon Dioxide , Family Characteristics , Socioeconomic Factors , China , Rural Population , Cooking , Air Pollution, Indoor/analysis
16.
Nat Food ; 5(3): 251-261, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486126

ABSTRACT

Food consumption contributes to the degradation of air quality in regions where food is produced, creating a contrast between the health burden caused by a specific population through its food consumption and that faced by this same population as a consequence of food production activities. Here we explore this inequality within China's food system by linking air-pollution-related health burden from production to consumption, at high levels of spatial and sectorial granularity. We find that low-income groups bear a 70% higher air-pollution-related health burden from food production than from food consumption, while high-income groups benefit from a 29% lower health burden relative to their food consumption. This discrepancy largely stems from a concentration of low-income residents in food production areas, exposed to higher emissions from agriculture. Comprehensive interventions targeting both production and consumption sides can effectively reduce health damages and concurrently mitigate associated inequalities, while singular interventions exhibit limited efficacy.


Subject(s)
Air Pollution , Income , Poverty , Food , Agriculture
17.
J Transl Med ; 22(1): 272, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475878

ABSTRACT

BACKGROUND: In HBV-associated HCC, T cells often exhibit a state of functional exhaustion, which prevents the immune response from rejecting the tumor and allows HCC to progress. Moreover, polymerase-specific T cells exhibit more severe T-cell exhaustion compared to core-specific T cells. However, whether HBV DNA polymerase drives HBV-specific CD8+ T cell exhaustion in HBV-related HCC remains unclear. METHODS: We constructed a Huh7 cell line stably expressing HA-HBV-DNA-Pol and applied co-culture systems to clarify its effect on immune cell function. We also examined how HBV-DNA-Pol modulated PD-L1 expression in HCC cells. In addition, HBV-DNA-Pol transgenic mice were used to elucidate the underlying mechanism of HBV-DNA-Pol/PD-L1 axis-induced T cell exhaustion. RESULTS: Biochemical analysis showed that Huh7 cells overexpressing HBV-DNA-Pol inhibited the proliferation, activation, and cytokine secretion of Jurkat cells and that this effect was dependent on their direct contact. A similar inhibitory effect was observed in an HCC mouse model. PD-L1 was brought to our attention during screening. Our results showed that the overexpression of HBV-DNA-Pol upregulated PD-L1 mRNA and protein expression. PD-L1 antibody blockade reversed the inhibitory effect of Huh7 cells overexpressing HBV-DNA-Pol on Jurkat cells. Mechanistically, HBV-DNA-Pol interacts with PARP1, thereby inhibiting the nuclear translocation of PARP1 and further upregulating PD-L1 expression. CONCLUSIONS: Our findings suggest that HBV-DNA-Pol can act as a regulator of PD-L1 in HCC, thereby directing anti-cancer immune evasion, which further provides a new idea for the clinical treatment of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Hepatitis B virus/genetics , DNA, Viral , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , DNA-Directed DNA Polymerase/metabolism
18.
Sci Total Environ ; 922: 171151, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38395160

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are widely used due to their unique structure and excellent performance, while also posing threats on ecosystem, especially long-chain perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). As the control of conventional PFASs, fluoroalkylether substances (ether-PFASs) as alternatives are constantly emerging. Subsequently, the three representative ether-PFASs, chlorinated polyfluoroalkyl ether sulfonic acid (F-53B), hexafluoropropylene oxide-dimer acid (HFPO-DA), and 4,8-Dioxa-3H-perfluorononanoicacid (ADONA) are discovered and have received more attention in the environment and ecosystem. But their security is now also being challenged. This review systematically assesses their security from six dimensions including environmental occurrence in water, soil and atmosphere, as well as bioaccumulation and risk in plants, animals and humans. High substitution level is observed for F-53B, whether in environment or living things. Like PFOS or even more extreme, F-53B exhibits high biomagnification ability, transmission efficiency from maternal to infant, and various biological toxicity effects. HFPO-DA still has a relatively low substitution level for PFOA, but its use has emerged in Europe. Although it is less detected in human bodies and has a higher metabolic rate than PFOA, the strong migration ability of HFPO-DA in plants may pose dietary safety concerns for humans. Research on ADONA is limited, and currently, it is detected in Germany frequently while remaining at trace levels globally. Evidently, F-53B has shown increasing risk both in occurrence and toxicity compared to PFOS, and HFPO-DA is relatively safe based on available data. There are still knowledge gaps on security of alternatives that need to be addressed.


Subject(s)
Alkanesulfonic Acids , Caprylates , Fluorocarbons , Propionates , Water Pollutants, Chemical , Animals , Humans , Bioaccumulation , Ecosystem , Fluorocarbons/analysis , Ethers , Ethyl Ethers , Water Pollutants, Chemical/analysis , China , Environmental Monitoring
19.
Am J Pathol ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38417697

ABSTRACT

Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. The expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with RT-qPCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including GPX4, FTH1, long-chain acyl-CoA synthetase 4, TFRC, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.

20.
J Integr Med ; 22(1): 72-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38307819

ABSTRACT

OBJECTIVE: Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS: Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS: A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION: The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.


Subject(s)
Dependovirus , Melitten , Mice , Male , Animals , Humans , Dependovirus/genetics , Melitten/pharmacology , Melitten/genetics , Transduction, Genetic , HEK293 Cells , Mice, Inbred C57BL , Genetic Vectors
SELECTION OF CITATIONS
SEARCH DETAIL
...